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Abstract 

The modeling of the spectral behavior of the refractive indices of the binary, ternary and quaternary 

III-V semiconductor alloys in the energy range from 0.2 to 4eV, including the transparent region, is 

presented. The extended model of interband transition contributions incorporates not only the fundamental 

absorption edge contribution to the dielectric function, but also contributions from higher energy and 

indirect transitions. It is demonstrated that indirect energy transitions must be included in the calculations of 

the complex dielectric function of the material in the transparent region. Indirect transitions from different 

critical points in the Brillouin zone are treated separately. The comparison between the theoretical refractive 

indices and the experimental data for AlGaAsSb, AlGaInAs, AlGaInP, GaInAsSb, and GaInPAs alloys is 

presented. These calculations have been applied to the design of Bragg mirrors with the highest refractive 

index contrast for heterostructure lasers. 
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contributions. 

 

Introduction 

The design and analysis of such devices as injection lasers, photodiodes, detectors, solar cells, 

multilayer structures, and microcavities requires the exact knowledge of the optical constants of III-V 

compound semiconductors in the region near the fundamental absorption edge as well as at the higher 

photon energies. The refractive indices have been reported for many III-V binary, as well as for limited 

number of ternary compounds. However, this data is limited and does not extend to many compounds of 

present interest. It is therefore important to develop a theoretical model, which is both extensive and 

accurate.  

In modeling of the optical constants of semiconductors in the fundamental optical region, several 

approaches are typically used: (1) empirical formulas, (2) damped harmonic oscillator (DHO) models, (3) 

standard critical point (SCP) models. Optical constants determined from empirical formulas (such as the 

Sellmeier dispersion equations for the refractive index and Urbach’s rule for the absorption coefficient [1], 
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or the expression for n based on interpolation of a dielectric quantity using Vegard’s rule by Burkhard et 

al.[2]) are not related through the Kramers-Kronig dispersion relation and are valid only over a very limited 

energy range.  

A semi-emperical single effective oscillator model proposed by Wemple et al.[3] does provide an 

analytical expression for the dispersion of the semiconductor refractive index at photon energies 

significantly below the direct band edge. The harmonic oscillator model does not incorporate the concept of 

the optical energy band gap. Thus, the optical energy band gap of semiconductors cannot be directly 

determined from this approach [4]. This model also lacks the agreement with experimental data at the band 

edge, which is the energy range of the most interest for semiconductor laser devices.  

When the photon energy is smaller than the band gap energy, the quasi-classical Boltzmann 

equation or Drude theory based on a simple harmonic oscillator model can be applied [1]. However, the 

Drude theory ignores the carrier related effects around the band gap and the results are valid only in the low 

optical frequency region. An extension of the Drude theory through the quantum density matrix method has 

been presented by Jensen et al.[5]. The experimentally observed dispersion of the refractive index near the 

fundamental absorption edge can be accounted for by a quantum mechanical calculation, which modifies 

the wavelength dependence predicted by the classical Drude theory. This approach differs from the usual 

method of the refraction index calculation, which involves the initial calculation of the imaginary part of the 

dielectric constant and integrating it using the Kramers-Kronig relation to obtain the real part of the 

dielectric constant. The advantage of this method is that an expression for the index of refraction, n, can be 

obtained in terms of band structure parameters, such as the energy band gap, Eg, the spin-orbit splitting 

energy, Δ, and the effective masses. 

The standard critical point (SCP) model can determine the position of critical points of the 

semiconductor band structure, but cannot accurately predict the dielectric function [4]. The modified SCP 

model was initially proposed by Korovin [6] and Cardona et al.[7], and then developed by Adachi [8], and 

Lin et al.[9]. The model of interband transition contributions (ITC model) was introduced as a method to 

analyze the refractive index of III-V compounds at energies below and above the direct band gap by 

including the electron-hole pair transitions, and by adding the excitonic terms at the two lowest energy gap 

transitions. The comparison between available experimental results of the spectral behavior of III-V 

compound semiconductors and the theoretical data calculated using the above mentioned models often 

reveals a lack of agreement, which is pronounced for the photon energies around the fundamental 

absorption edge. These differences may arise from the excitonic effects, which are largely ignored in the 

calculations of the  real part of the dielectric constant [9].   

In the present work, an extended model of interband transition contributions (EITC) is developed 

for the calculations of real and imaginary parts of the dielectric constant of compound semiconductors. The 
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model introduces (1) the broadening effects, caused by phonon and defect scattering in direct and indirect 

transitions; (2) the strength of direct band gap transitions as a function of the effective electron, heavy hole 

and light hole masses of the semiconductor; (3) the exciton contributions; (4) the separate contributions of 

Ex and El indirect band gap transitions to the real and imaginary part of the dielectric constant. The 

importance of indirect and higher direct energy transitions is demonstrated through these calculations and 

through the comparison with experimental results. The detailed description of our extended ITC model is 

given in the Appendix. We note that a parameter fit is required for the present extended ITC model, which 

is similar to the SCP model parameter fitting. However, after the above listed changes are introduced into 

the SCP model, the resulted extended ITC theoretical model shows better agreement with available 

experimental results. The index of refraction for the following alloys has been calculated: AlP, AlAs, AlSb, 

GaP, GaAs, GaSb, InP, InAs, InSb, AlGaAsSb, AlGaInAs, AlGaInP, GaInAsSb, and GaInPAs. The 

comparison between the available experimental and calculated data is presented for the above mentioned 

quaternary semiconductor alloys. Finally, we have used the results of these calculations in the design of 

Bragg mirrors for Vertical Cavity Surface Emitting Lasers.  

 

The Extended ITC Model 

The dielectric constant ε(E) = ε1(E)+iε2(E) describes the optical response of the medium as a 

function of photon energy E. The imaginary part of the dielectric function ε2(E) is calculated based on a 

simplified model of the band structure using the joint density of states for each Critical Point (CP) 

considered. The real part of the dielectric function ε1(E) was calculated through the knowledge of the 

imaginary part, ε2(E), by employing the Kramers-Kronig relation [10]. Thus, the total imaginary and real 

parts of the dielectric function are presented as a sum of several terms that represent the contribution of 

different energy CPs. These points are associated with electronic transitions in the band structure at the 

energies designated as E0, E0+Δ, E0
ex, E1, E2, and Ei. In case of ternary, AxB1-xC, and quaternary, AxB1-

xCyD1-y, semiconductor alloys each of the terms become a function of the alloy mole fraction, x and y. 

There are several absorption mechanisms [11] that contribute to the imaginary part of the dielectric 

constant, therefore ε2(E) can be written as:   
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where ε2
Eo and ε2

Eo+Δ are contributions due to the absorption by direct interband optical transitions near the 

fundamental absorption edge and spin-orbit transitions, ε2
exEo is due to the absorption by the discrete series 

of excitons near the E0 energy gap, ε2
E1 and ε2

E2 are contributions of the higher energy interband transitions, 

and ε2
Ei is due to the indirect interband absorption effects.  
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The absorption spectrum for photon energies greater than the band gap energy is composed of 

many peaks correlated with Van-Hove singularities of the joint density of states [11]. For III-V zinc-blende 

type semiconductors, the contributions of two main peaks (E1 and E2) must also be included. These peaks 

correspond to the direct optical transitions at the L and X points of the BZ, respectively. The E1 peak is 

treated as a two dimensional M0 type critical point, while the structure of the E2 peak is characteristic of a 

damped harmonic oscillator. The E1 peak arises from the transitions occurring over a large portion of the 

BZ around the L critical point (CP), between the upper valence band (VB) and the lowest conduction band 

(CB) along the <111> direction in the Brillouin zone. The higher interband transitions in the X region, 

along the <100> direction, usually do not correspond to a single well defined critical point (CP). The peak 

is assumed as a combination of several transitions resulting in a peak in the joint density of states. These 

transitions can occur between the upper VB and the lower components of the second CB around the Γ CP, 

between the upper VB and the second lowest CB plus spin-orbit splitting component, between the upper 

VB and lower CB along the <100> X direction. Because the investigated model is concerned primarily with 

the lower energy transitions, the higher interband transition contributions from the X region were modeled 

as a constant M contribution. Similarly, the real part of the dielectric function can be presented as the 

following sum: 
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The detailed description of the individual contributions to the real and imaginary parts of the dielectric 

constant is given in the Appendix. The presented model is applicable in the photon energy range from 

0.2eV to about 4eV. The crystal parameters such as energy band gap values, effective electron and hole 

masses, and static dielectric constant employed in the calculations are given in the Table 1 [1,12]. Also, the 

values of the bowing parameters used for the energy band gap calculations for the ternary alloys are listed 

in the Table 2 [12-16]. The complex dielectric constant and refractive index of binary alloys were first 

calculated and the results were then used in the calculations for quaternary alloys.   

It is noted that the dielectric constant of the semiconductor also depends on the impurities or lattice 

defects as well as on the alloy disorder and lattice thermal vibrations. These effects reduce lifetime of the 

free electron-hole pair states through the lifetime broadening effects included in the present model [17]. The 

intensity of the exciton spectrum is also known to be strongly affected by damping or lifetime broadening 

[17].  

When the incident photon energy is insufficient to cause band-to-band transition or formation of 

excitons, the nonlinear optical absorption process in a semiconductor can still occur through the excitation 

of lattice vibrations, and through the two photon absorption or free-carrier absorption which involves the 

emission or absorption of phonon [7]. The effect of intraband transitions on the optical properties of 
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semiconductors is known to be observed at energies well below the fundamental band edge and to become 

increasingly pronounced towards longer wavelengths. Their contribution to the refractive index can be 

obtained from the classical Drude dispersion theory. Since the present extended ITC model primarily deals 

with the transition energies around and above the fundamental absorption edge of the semiconductor under 

consideration, the effect of free carrier absorption at very low energies was not included in the calculations. 

As a result, the presented model has the lower limit of the applicable energies set at approximately 0.2eV.  

The refractive index of a semiconductor, n(E), and the extinction coefficient, k(E), were calculated 

in terms of  the complex dielectric function as follows: 
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where ω denotes the photon frequency and c denotes the speed of light in vacuum.  

There are a total of 12 unknown parameters required by the model in Eqs.(1) and (2) for the real 

and imaginary part of the dielectric constant. These parameters are obtained through minimization of the 

total error function, F, over all available experimental points for each semiconductor alloy of interest, and is 

given below as: 
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Tables 3-6 provide the values of the fitted parameters used in the calculations of the refraction index of the 

quaternary semiconductor alloys.  

 

Calculation Results and Discussion  

The present investigation of the optical properties of the III-V semiconductor alloys is centered on 

describing the behavior of the refractive index for the photon energies in the transparent region as well as 

for the higher energies. The calculated index of refraction from our extended ITC model as well as the 

comparison with the available experimental data for several quaternary III-V semiconductor alloys is shown 

in Figures 1-12. Excellent agreement between calculations and experiments is shown, although for two 

compositions, Al0.3Ga0.16In0.54As and Al0.22Ga0.29In0.49P, the difference between the theory and experiment is 

about 0.1 in the units of the index of refraction. The strongest resonance peak of the index of refraction 

occurs at the E1 transition energy for all alloys. The E1 peaks in this calculation appear to be generally 

sharper than the experimental values, which can be explained by the absence of the lifetime broadening 
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effects in the current model for the E1 optical transition. It is believed that by adding the broadening 

constant as well as including the exciton effects for the E1 transition energy, better agreement for this peak 

can be obtained. The bowing constants of the E0 transition for the quaternary damping parameters were 

found positive for all alloys investigated. The increase in the broadening parameter may be attributed to the 

potential fluctuations resulting from random atomic placement in the quaternary alloys as compared with 

binary alloys. Maximum anion disorder occurs at y=0.5, while that for the cation occurs at x=0.5 and y=1 

[18]. Therefore, the high atomic disorder in the triple-cation sublattice of Al0.3Ga0.16In0.54As and 

Al0.22Ga0.29In0.49P alloys with compositions x, y, z close to the middle point may be responsible for the 

deviations of the calculated refractive index from the one determined experimentally. In this case the 

bowing parameters can no longer be represented as a quadratic function of the alloy composition. The 

atomic disorder and composition fluctuations are expected to broaden the optical spectra.  

The strength parameters of the indirect band gap transitions, described by DL and DX, show a 

splitting behavior for most of the alloys. The strength of these transitions is usually divided unequally, with 

one of the parameters being higher than the other one. This behavior arises from the unequal contribution of 

indirect optical transitions over different regions of the Brillouin zone. Our calculations do not show that 

transitions from the L CP prevail as has been assumed in other models [12,19].     

The valley contributions to the real part of the dielectric constant are separated according to the 

partition of the Brillouin zone. For all materials, the L region with corresponding direct E1 and indirect EL 

optical transition energy contributes approximately 65 –75% to the total value of the dielectric constant 

while the Γ region corresponding to the E0 transition accounts to about 5-10%, the X region, which is 

represented by indirect EX energy and constant M, contributes about 15 to 30% of the total.  Thus, the index 

of refraction is essentially determined by the band structure away from the center of the BZ, and 

modifications of the electronic structure at L and X points rather than Γ CPs, produce the observed 

variations in the index of refraction.  

The contribution to the total dielectric function of 3D discrete exciton transitions close to the E0 

transition energy are found to be negligible, about 0.1%, due to the very narrow spectral range of such 

transitions. The continuum exciton transitions at the E0 CP are very similar to noninteracting electron hole 

pair characteristics, and therefore their contribution is similar to regular ε(E) expressions at the E0 energy 

[20]. Exciton transitions usually are not observed when either the thermal energy exceeds the exciton 

binding energy, or when screening effects push the exciton levels into the continuum of CB [21]. Therefore, 

room temperature excitonic effects are not as important as those at low temperatures. At low temperatures, 

the optical spectra may not be explained within the framework of the one-electron approximation used for 

RT model, since the excitonic effects may profoundly modify the CP singularity structure [20]. 
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The results of the GaxIn1-xPyAs1-y, AlxGa1-xAsySb1-y, GaxIn1-xAsySb1-y, GaxIn1-xPyAs1-y, AlxGayInzAs 

and AlxGayInzP alloys investigation were extrapolated to the different compositions of interest to photonic 

devices. In order to select the optimal materials for the semiconductor Distributed Bragg Reflectors (DBRs) 

for application in long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs), the maximum and 

minimum refractive indices were calculated for response to the incident photon energy of 0.8eV for the 

alloys lattice matched to the InP substrate under the direct band gap conditions. The highest index of 

refraction difference can be found in GaInAsSb, AlGaInAs, GaInPAs, GaSb, InAs and InSb alloys. The 

Al0.05Ga0.42In0.53As/InP material system with index of refraction difference of 0.46 is therefore 

recommended for the Bragg mirror applications.  

 

Summary 

An extended ITC model and calculations of optical properties for the quaternary III-V 

semiconductor alloys are presented and the results are compared with the experimental data. The successful 

fit of the refractive indices in the transparent optical region as well as for the higher photon energies was 

attained by combining several interband transition contributions. The largest contribution to the dielectric 

function for all alloys is due to the direct and indirect optical transitions along <111> and <100> directions 

in the BZ, which accounts for 85-90% of the total contributions. Therefore, except for the optical absorption 

in the vicinity of the Γ gap, most of the optical properties of the materials, especially the index of refraction, 

are determined by the electronic structure around L point, rather than at the center of the BZ. Since our 

model is more sensitive to the indirect band gap transitions, the nature of the indirect band gap contributions 

to the total dielectric function of the alloy may be better understood. The influence of the discrete exciton 

states around the E0 edge at room temperature was found negligible. The strength of the excitonic 

transitions is weak and contributes only 0.1% to the dielectric constant. The continuum exciton states at the 

E0 and E1 CPs are believed to have a one-electron like characteristics. This ensures that the continuum 

exciton contributions to the dielectric constant can be approximated using the expression for the regular E0 

or E1 transitions.  We have applied the results of these calculations to the AlGaInAs/InP material system for 

applications as semiconductor distributed Bragg reflectors.   
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Appendix 
 
E0 and E0+Δ  Transitions: ε2

E0(E) and ε1
E0(E), ε2

E0+Δ(E) and ε1
E0+Δ(E) contributions 

The direct band gap E0 and the spin-orbit level E0+Δ transitions in the diamond and zinc-blende 

type semiconductors occur at the center of the Brillouin zone, at the Γ point. These transitions are the three-

dimensional M0 critical points. The relation between the band structure and ε2(E) is given as: 
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where the Dirac δ function represents the joint spectral density of states between the valence (VB) and 

conduction band (CB) states differing by the energy E=ћω of the incident light, and Mcv(k) is the 

momentum matrix element between the VB and CB states. In order to evaluate the contribution of the E0 

critical point (CP) to ε2, we considered the momentum matrix element Mcv(k) to be constant with respect to 

the photon energy. Therefore, the expression in Eq.(6) for ε2 then becomes: 
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where A is the fitting parameter which contains all of the constants and the momentum matrix element  The 

integral in Eq.(7) is the joint density of states which is proportional to the square root of energy, resulting in 

[17]:  
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where i=1 denotes heavy hole and i=2 denotes light hole. The fitting parameters Ai are given by: 
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where ε0 is a permittivity of vacuum, and m0 is a free electron mass. The reduced effective mass (Eq.(10)) 

of the electron/heavy hole (light hole), is given as uhh(ulh), where me* is the effective electron mass and 

mhh* is the effective heavy hole mass: 
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Solving Kramers-Kronig relation for the E0 contribution to ε2, we obtain:  
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where θ(x) is the Heaviside step function,  
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The model includes two types of interband transition contributions to the dielectric function at the 

lowest direct band gap: free electron-hole pair transition (band-to-band transition) and the Wannier exciton 

transitions or discrete series excitons. The free exciton transitions in the vicinity of the E0 CP are introduced 

through a weakly bounded exciton, having a ground state Rydberg energy given by: 
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where εs is the static dielectric constant.  

The ε2
ex(E) part of the imaginary dielectric function given in Eq.(14) is due to the E0 ground state 

exciton transitions, and may be described by a Lorentzian line shape [20]. The lifetime broadening effects 

caused by phonon and defect scattering are included as a complex part of the photon energy E = ћω+iΓ, 

where Γ is the half-width at half-maximum (HWHM) of the Lorentzian function for the transitions 

investigated. Hence, the following expression is obtained for the imaginary part of the dielectric function 

for the E0 transition [9]: 
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where Ehh
ex (Elh

ex ) is the heavy hole (light hole) exciton transition energy given by: E0-Rhh
ex (E0-Rlh

ex), and 

ahh (alh) is the radius (in Å) of the ground state heavy hole (light hole) exciton given as (0.529 εsm0)/uhh. The 

HWHM of the Lorentzian line-shape function is given as Γ0 for the E0 transition, and the HWHM of the 
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Lorentzian function for the heavy hole or light hole transitions is given as Γex. To simplify the model, Γhh
ex 

and Γlh
ex are considered to be equal.  

 The same broadening and excitonic effects are introduced into the expression of the real part of the 

dielectric function from Eqs.(14) and (15), and we obtain: 
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The contributions from E0+Δ transitions to dielectric function are presented in the simplified form 

without broadening effects:  
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E1 Transitions: ε2
E1(E) and ε1

E1(E) contributions 

The E1 and E1+Δ transitions occur along the <111> direction or at L point in the BZ. The 

longitudinal effective mass is much higher than its transverse counterpart, thus, one can treat these CP as 

the 2D minimum. Neglecting lifetime broadening effect, the contribution of the E1 transition to ε2(E) is 

given as [9]: 
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From Eqs.(20) and (21), the real part of the dielectric function for E1 transition consists of the two 

parts, ε1
B1 and ε1

B2, or the contributions from B1 term and B2 term, respectively: 
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Introducing a broadening effect, Γ1, into the E1 transitions the contribution of the B1 term to ε2(E) is 

given by: 
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and the contribution of the B2 term to ε2(E) is given by: 
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where b1, b2, b3, and b4 and given by: 
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The real part of the dielectric constant for the E1 transition with introduced broadening effect is shown in 

Eqs.(26) and (27): 
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The total contribution of the real and imaginary part of the dielectric function for the E1 transition is 

calculated as a sum of the B1 and B2 terms presented above: 
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E2 and Higher Transitions: ε2
E2(E) and ε1

E2(E) contributions 

The contributions to the dielectric function from the transitions at energies higher than E1 are 

usually labeled as E2 and are modeled as a single damped harmonic oscillator with energy E2 as presented 

in Eqs.(30) and (31): 
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where C is the strength parameter of the E2 transition, and β is the damping factor.  

Since E2 transitions in X region of the BZ do not correspond to a single, well defined CP, its 

characteristics is more complicated for analysis [17]. Higher energy transitions also contribute to the 

dielectric function. However, these contributions vary weakly with photon energy. Therefore, we have 

modeled the effects of these transitions as a single real additive constant, M, to the real part of the dielectric 

function.  

 

Indirect Transitions: ε2
Ei(E) and ε1

Ei(E) contributions 

Indirect transitions from Γ point states at the VB edge to the X and L point states at the CB edges 

are appreciable at room temperature. The transition requires a phonon to conserve both energy and 

momentum. The solution for ε2(E) using a second order time-dependent perturbation theory without 

introducing a broadening effect is given as [9]: 
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where D is the indirect transition strength parameter, and Ec is a cutoff energy which accounts for the finite 

width of the energy bands. The phonon energy, ћωq, taking part in the indirect transition was ignored in the 

final calculations. The energies of the indirect band gaps at X and L points are always different, and hence 

our model treats these transitions separately. Therefore, the dielectric function for the indirect transitions is 

presented as a sum of two terms corresponding to EX and EL indirect band gap energies with DX and DL as a 

strength parameters of these transitions:  
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By applying Kramers-Kronig relation to ε2
Ei(E) the real part of the dielectric function due to 

indirect band gap transitions is obtained [9] and is given in Eq.(34): 
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Introducing the lifetime broadening effects, ΓX and ΓL, to the EX and EL indirect band gap 

transitions, the dielectric function is described as: 
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Composition Dependent Terms  

For ternary and quaternary alloys, the composition dependence of the interband transition energies, 

the lattice constants, electron and hole effective masses and the fitting parameters has to be considered. The 

nonlinear dependence of the transition energies on the composition of the alloy is described through the 

corresponding binary alloy energies and ternary bowing parameters. The interpolation scheme is used to 

calculate the quaternary alloy energy band gap as a function of alloy composition (0…x…1, 0…y…1). For 

AxB1-xCyD1-y quaternary alloy type the energy band gap is obtained as following [12-16]:  

( ) 1
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where EABC, EABD, EBCD, and EACD are the ternary alloy energy band gaps containing the corresponding 

bowing parameters. For AxByCzD  (ABxCyDz ) type quaternary alloys (where 0…x…1, 0…y…1, 0…z…1, 

x+y+z=1) the energy band gap is given by Eq.(38) below: 
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The dependence of the energy band gap of the AxB1-xC ternary alloy on its composition is given as: 

)x1(xbpE)x1(xE)x(E ABCBCACg !!!+=                           (39) 

where bpABC is a bowing parameter and, in general is a positive number. The bowing parameters used in the 

calculations are given in the Table 2 [12-16].  

 The composition dependence of the lattice constants, effective electron and hole masses of the 

ternary or quaternary alloys is given by the linear Vegard’s law interpolation scheme. Application of the 

Vegard’s law based on the linear behavior of the ternary or quaternary parameters allows one to find an 

unknown alloy parameter using the available binary alloy or end point constants. Hence, the composition 

dependence of A xB1-xC ternary alloy parameter PABC(x) is given as: 

BCACABC P)x1(xP)x(P !+=                                            (40) 

where PAC and PBC are constant parameter values of the corresponding binary alloys. For the AxB1-xCyD1-y 

quaternary alloy type, the parameter PABCD(x,y) is expressed as: 

BD

BCADACABCD

P)y1()x1(

Py)x1(P)y1(xPyx)y,x(P

!"!"+

+!!"+!"!+!!=
                     (41) 

Likewise, the expression for composition dependence of parameter PABCD(x,y) for AxByCzD ( ABxCyDz ) 

quaternary alloy type is: 

ADACABABCD P)yx1(yPxP)y,x(P !!++=                                    (42) 

 

Each quaternary fitting parameter of the AxB1-xCyD1-y alloy is modeled as a nonlinear function of 

the composition z and y, in the following form: 

)y1(yBP)x1(xBPP)y1)(x1(

P)y1(xP)x1(yP)x1(x)y,x(P

21BD

ADBCAC

!+!+!!+

+!+!+!=
                         (43) 

where PAC, PBC, PAD, PBD are the binary constants corresponding to one of the fitting parameters (α, Γ0, B1, 

B2, E1, DX, DL, ΓX, ΓL, Ec, M), BP1 and BP2 are the corresponding bowing parameters. In the case of the 

AxByCzD type alloy, the quaternary parameter is given as: 
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)y1(yBP)x1(xBPzPyPxP)y,x(P 21CDBDAD !+!+++=                     (44) 

Tables 5 and 6 present the values of the bowing parameter determined by fitting the theoretical dielectric 

function to the available experimental data for GaxIn1-xPyAs1-y, AlxGa1-xAsySb1-y, GaxIn1-xAsySb1-y, GaxIn1-

xPyAs1-y, AlxGayInzAs and AlxGayInzP alloys.  
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Figure Captions 

 

Figure 1. Refractive index of AlxGa1-xAsySb1-y for x=0.8, y=1. 

Figure 2. Refractive index of AlxGa1-xAsySb1-y for x=0.4, y=1. 

Figure 3. Refractive index of AlxGa1-xAsySb1-y for x=0.2, y=1. 

Figure 4. Refractive index of AlxGayInzAs for x=0.3, y=0.16, z=0.54. 

Figure 5. Refractive index of AlxGayInzAs for x=0.48, y=0, z=0.52. 

Figure 6. Refractive index of AlxGayInzAs for x=0, y=0.47, z=0.53. 

Figure 7. Refractive index of AlxGayInzP for x=0.5, y=0, z=0.5. 

Figure 8. Refractive index of AlxGayInzP for x=0.22, y=0.29, z=0.49. 

Figure 9. Refractive index of GaxIn1-xAsySb1-y for x=0.85, y=0.14. 

Figure 10. Refractive index of GaxIn1-xAsySb1-y for x=0.47, y=1. 

Figure 11. Refractive index of GaxIn1-xPyAs1-y for x=0.24, y=0.49. 

Figure 12. Refractive index of GaxIn1-xPyAs1-y for x=0.47, y=0. 
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Tables 

 

Table 1. Material parameters of the binary III-V semiconductor alloys used in the calculations [1,12]. 

 

 AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb 

a, Å 5.464 5.661 6.136 5.451 5.653 6.096 5.869 6.058 6.479 

E0, eV 3.62 3.03 2.3 2.78 1.424 0.75 1.344 0.354 0.172 

EX, eV 2.41 2.153 1.615 2.272 1.804 1.25 2.74 2.28 1.71 

EL, eV 4.0 2.363 2.211 2.637 1.81 0.81 1.74 1.53 1.03 

Δ , eV 0.0 0.3 0.673 0.08 0.341 0.819 0.07 0.38 0.85 

Me lng
eff 3.67 1.1 1.64 7.25 0.063 0.041 0.077 0.022 0.014 

Me tr
eff 0.212 0.19 0.23 0.313 - - - - - 

Mhh
eff 0.513 0.409 0.94 0.56 0.5 0.28 0.56 0.35 0.34 

Mlh
eff 0.211 0.153 0.14 0.16 0.076 0.05 0.12 0.026 0.016 

ε s 9.8 10.06 12.04 11.11 12.9 15.7 12.61 12.25 17.76 

 

Table 2. Bowing parameters of the ternary semiconductor alloys used for the calculations of the energy 

band gap values [12-16].  

 

 C0, eV CX, eV CL, eV  C0, eV CX, eV CL, eV 

AlPSb 1.2 0.0 0.0 AlGaP 0.0 0.0 0.0 

AlPAs 0.22 0.0 0.0 AlInP 0.0 0.0 0.0 

AlAsSb 0.72 0.0 0.0 GaInP 0.758 0.15 0.68 

GaPSb 1.2 0.0 0.0 AlGaAs 0.438 0.16 0.0 

GaPAs 0.186 0.211 0.25 AlInAs 0.74 0.0 0.0 

GaAsSb 1.2 1.09 0.09 GaInAs 0.4 0.15 0.5 

InPSb 1.2 1.56 1.6 AlGaSb 0.47 0.0 0.21 

InPAs 0.36 0.27 0.26 AlInSb 0.42 0.0 0.0 

InAsSb 0.596 0.6 0.55 GaInSb 0.413 0.24 0.33 
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Table 3. Values of the fitted parameters obtained from the index of refraction simulations for the binary III-

V semiconductor alloys, AlP, AlAs, AlSb, GaP, GaAs, GaSb. 

 

 AlP AlAs AlSb GaP GaAs GaSb 

α  499.99 281.4 59.62 111.44 1238.17 5137.22 

M 0.602 -2.247 1.499 1.116 2.087 25.04 

Γ0 0.01 0.001 0.001 0.01 0.0161 0.01 

B1 1.883 6.416 3.759 5.452 4.624 5.328 

B2 9.973 12.25 7.126 11.549 7.724 9.491 

E1 4.2 3.886 2.809 3.63 2.906 2.02 

Dx 2.166 0.0 16.93 -13.48 13.81 -27.59 

Dl 0.0 11.29 60.81 -5.581 5.03 9.548 

Γx 0.01 0.001 0.001 0.01 0.001 -2.0 

Γ l 0.01 0.001 0.001 0.01 0.001 0.7783 

Ec 6.01 8.077 4.268 3.238 5.771 35.1 

 

Table 4. Values of the fitted parameters obtained from the index of refraction simulations for the binary III-

V semiconductor alloys, InP, InAs, InSb. 

 

 InP InAs InSb 

α  873.09 4035.03 1289.11 

M 3.163 6.91 3.298 

Γ0 0.01 0.28 0.0001 

B1 4.586 2.062 1.529 

B2 6.913 5.262 4.429 

E1 3.1 2.45 1.81 

Dx -42.51 -10.0 -42.88 

Dl 14.077 48.31 51.89 

Γx 0.01 0.01 0.01 

Γ l 0.01 0.01 0.01 

Ec 3.325 3.145 3.907 
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Table 5. Bowing constants of the fitting parameters for the quaternary alloys, AlGaAsSb, GaInAsSb, 

GaInPAs.  

 

 GaInPAs GaInAsSb AlGaAsSb 

 BP1 BP2 BP1 BP2 BP1 BP2 

α  -1491.11 -1036.45 -1.92x10-3 -0.65x10-3 50.72 41.56 

M 11.67 -138.59 5.26 -15.14 15.84 -8.13 

Γ0 -0.22 2.69 0.65 1.14 2.83 5.28 

B1 -7.79 108.05 -2.18 2.88 -1.71 -20.02 

B2 32.43 -6.08 -4.31 -12.28 -12.01 4.39 

E1 -0.75 163.55 -0.90 0.79 -0.13 15.16 

Dx -57.13 72.05 -8.89 -5.81 -72.98 -7.38 

Dl 45.49 -121.09 -18.06 -19.73 0.49 1.97 

Γx 5.57 -2.80 -7.01 -9.66 -0.52 -12.16 

Γ l -0.14 1.35 -2.32x10-2 4.83 -77.70 -64.30 

Ec -2.19 -0.49 -2.60 3.26 -2.61 12.33 

 

Table 6. Bowing constants of the fitting parameters for the quaternary alloys, AlGaInAs and AlGaInP.  

 

 AlGaInAs AlGaInP 

 BP1 BP2 BP1 BP2 

α  -24.67 -20.58 -0.21 -1.36 

M 23.49 -4.44 4.33 -5.81 

Γ0 9.02 -1.02 -0.79 1.99 

B1 -13.31 12.81 -5.17 -8.29 

B2 -31.46 16.16 -5.72 1.66 

E1 -7.41x10-3 7.66x10-2 -6.78 0.55 

Dx -17.43 -43.29 -0.37 0.51 

Dl -26.72 -37.51 0.16 -0.35 

Γx -4.07 -9.60 6.18x10-2 -4.01x10-2 

Γ l 93.25 -2.32x10-2 0.16 1.41 

Ec 21.78 -7.74 -11.15 4.22 
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