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Abstract 

A Monte Carlo simulation is reported for analog integrated circuits and is based on the modification of the 
failure rate of each component due to interaction effects of the failed components.  The Monte Carlo 
technique is the methodology used to treat such circuits, since they are independent of the number of 
components and the degree of system complexity.  The reliability model is applicable over a wide 
temperature and bias range and may be used to predict reliability of microwave systems.  The model is 
compared to accelerated test results of two analog microwave circuits.  Excellent agreement has been 
obtained for a low noise amplifier as well as for a transimpedence amplifier. 

 
  INTRODUCTION 
 
Assessing the high temperature behavior of MMICs (Monolithic Microwave Integrated Circuits) from 
individual FET (Field Effect Transistor) reliability is an important practical problem.  The FET reliabilities 
are often assessed by life tests conducted under controlled test environments - accelerated life testing. 
Testing an entire MMIC, or even its components, under the actual operational environments is rarely 
feasible. In assessing the MMIC reliability, previous investigations were based on MIL-HDBK-217 [1] and 
simply assumed that the active and passive components are statistically independent of each other. This is 
often inappropriate, and therefore correlation coefficients  must be used. 
 In the case of a complex MMIC circuit, it is not plausible to attain the analytical reliability by the 
Markov approach [2] for constant failure rate, which perhaps is the best and most straightforward analytical 
approach to computations in systems with dependence.  The equations become numerous and out of control 
for a large MMIC system, and the Markov method may break down when failure rates become 
nonconstant.  The Monte Carlo technique is an appropriate methodology used to treat such circuits, since 
they are independent of the number of components and the degree of system complexity [3].  The present 
report aims at establishing a reliability model to predict the reliability of MMICs by using Monte Carlo 
techniques.  The reliability model will be applicable over a wide temperature range and hence may be used 
for microwave systems. 
 
  I. THE METHODOLOGY TO ESTIMATE MMIC HIGH 
         TEMPERATURE PERFORMANCE 
 
  The Joint Probability Method via Monte Carlo Simulation 
 
Theoretically, a component-dependent MMIC system can be represented by a series of joint probability 
density functions for the remaining time to failure of the surviving components. For a set of n correlated 
(dependent) components with random times-to-failure t1, t2, …, tn, the joint probability density and 
cumulative distribution functions can be expressed as 
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where f1(t1) and F1(t1) are probability density and cumulative distribution functions of component 1 (the 
first failed component), and f1,2, …, i (ti | ti-1, …, t2, t1) and F1, 2, …, i           (ti | ti-1, …, t2, t1) are the conditional 
probability density and cumulative distribution functions of component i given that components 1, 2, …, i - 
1 have failed.  Since the random times-to-failure are dependent, a set of uniformly distributed numbers can 
not be used to generate the times-to-failure corresponding to components 1, 2, …, n. An alternative method 
is to let (x1, x2, …, xn) denote a set of uniformly distributed random numbers which are between 0 and 1.  
Then the random time to failure t1 corresponding to the first failed component 1 can be determined from 
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With the value of t1 known, the conditional distribution function F1, 2(t2 | t1) becomes a function only of t2, 
and it can be inverted to find t2 as 
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This recursive procedure is continued until the last time to failure tn is generated as: 
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We can repeat the above procedure until a desired sampling size N is obtained. The reliability and mean 
time to failure (MTTF) of the system can then be estimated as 
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where Ns is the number of successes (i.e., random time to failure is greater than designated lifetime) and 
TTFi is the random time to failure for sampling i.  The above technique is applicable for cases where the 
joint cumulative distribution functions are known.  In the case of a complicated MMIC, however, the joint 
cumulative distribution functions are not easily obtained.  Therefore, an alternative method has been 
proposed and applied to estimate the reliability of MMIC by introducing a weighing factor w(nf, t) which 
will be discussed later.  
 
   The Non-Markovian Method via Monte Carlo Simulation 
 
Most IC system reliability studies assume that the components' failure rates λ are constant [4].  This is a 
very common assumption for most applications.  However, if the assumption of constant failure rate is not 
valid such as in MMIC circuits, then the system becomes non-Markovian [5] and additional techniques are 
required for handling this process (MMIC circuits are non-linear).  The way of generating the histories for a 
non-Markovian system is the same as that for a Markovian system [6].  Any one of the generated histories 
is composed of many time-segments and each time-segment represents a state change.  The total failure rate 
of the system is given as: 
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where λi(t) is the failure rate of component i at time t.  The probability density f(t) that the state change will 
occur at time T + t, if the previous state change occurred at T, would be  
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Therefore, the cumulative probability F(t) that there is a state change before t, if the last state change at T, 
is given by 
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In a Monte Carlo simulation, a random number is generated as x, uniformly distributed between 0 and 1, to 
stand for the cumulative probability function F(t), i.e., 
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The time to failure t for this particular time-segment will then be calculated by the following equation. 
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This inversion of F(t) can be carried out either analytically or numerically.  The above procedure is 
repeated until the desired sampling size is obtained.  The reliability and MTTF are determined by Equations 
(8) and (9). 
 
   The MMIC Monte Carlo Technique  
 
For the MMIC Monte Carlo simulation, it is convenient to define the inter-component dependence by 
modifying the failure rate for each surviving component due to the interaction effects of the failed 
components.  The failure of a component would then involve choosing the proper combination of 
components and the corresponding failure rates to generate the remaining times-to-failure.  The 
modification of the failure rates of dependent-components may not have any identifiable pattern, and may 
involve changing the type or parameters of probability density function.  For a given component, the failure 
rate changes are expected to depend on the failed components.  The modified failure rate can be expressed 
as: 
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where  
λii is the failure rate due to component i itself, 
λij is the failure rate due to interactions between components i and j, 
λcc is the failure rate due to common cause, and  
W(ni, nf) is a weighting function of component ni and failed components nf. 

 
The function W is always equal to or greater than 1.  If it is 1, then there is no interaction between 
components.  If it is very large, then there is strong interaction between components and these components 
can be put in series in the reliability block diagram. 
 
 



 
II.   MMIC CIRCUIT RELIABILITY MODEL 
 
   The Given Conditions for MMIC Reliability Model 
 
In general, several conditions must be given in order to establish a practical MMIC circuit reliability model, 
and these are summarized as follows: 

1) The MMIC system is composed of m statistically-dependent subsystems (or stages, Figure 1), while 
the ith (i = 1, …, m) subsystem (or stage) consists of ni statistically-dependent and non-repairable 
components.  Therefore, the MMIC system consists of n components where: 
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and where each component is in either a failed or operating state.  

2) Dependent failures can be due to a common cause (the failure of multiple components due to a single 
mechanism such as catastrophic or environmental failure), to interactions within a subsystem, and  
to interactions between subsystems.  Due to the component failure interaction, the failure rate of the 
component (or subsystem) would increase once the neighboring components (or subsystems) have 
failed. 
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Figure 1   A Typical Reliability Block Diagram of a Multi-Stage MMIC 
 

3) A single failure mechanism can affect several components, and a given component can be affected 
by several mechanisms and these mechanisms are statistically-independent. 

4) Failure rate λ of a component i would be the sum of λii (due to failure mechanism for component i 
itself), λij (due to interaction by component j) and λcc (due to a common cause such as catastrophic 
failures which result a system failure as a whole). The interactions between passive components will 
be neglected. 

5)  Figure 2 shows the reliability schematic of a TIA MMIC system. The effects of interactions among 
series connections may be neglected, since the path associated with the failed component has also 
failed. For example, if component 5 in Figure 2 has failed, the path (5-6) through it has also failed 
(open circuit).  Component 6 is assumed to be non-operating. The interaction caused by 
components 5 and 6 therefore can be ignored. 
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Figure 2   The Reliability Block Diagram of TIA 
 

6) The effects due to interactions are the same for the surviving components for the same subsystem.  
However, the effects of interactions among parallel active redundant FETs will be taken into 
account.  As known, the stress of an active redundant component will increase once the neighboring 
components have failed.  The stress will also increase with respect to the number of failed 
components, and this causes the survivors to have a higher failure rate.  Referring to Figure.2, 
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where 
λ2 is the failure rate of component 9 (or 10) for given failed paths 1-2 and 7-8, 
λ1 is the failure rate of component 9 (or 10) for given failed path either 1-2 or 7-8, and 
λ0 is the failure rate of component 9 (or 10) for no failed path. 

(7) The effects due to interactions are the same for the surviving components for the same subsystem.  
For example, if component 7 (or 8) has failed, its effects on components 1, 2, 9 and 10 are the same. 

 (8) Interactions among components and subsystems are estimated through correlations determined 
experimentally if it is possible, or may be estimated by SPICE circuit analysis. 

(9) The failure distribution function is given for each independent component.  It can be a mixture of 
several known failure distribution functions, i.e., 
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where ai is the fraction of the effects due to failure distribution function fi and a1 + a2  + ⋅⋅⋅ + an = 1.  
The weighting factors however must be modified after each component failure. 

 
   Procedures to Model MMIC Reliability 
 
Two cases have been investigated, and the results as well as the procedures used are summarized as 
follows: 
 
Case 1: If the interactions between components can be estimated by the correlation matrix obtained 
through SPICE circuit analysis or by experiment, then the steps to model the MMIC system reliability are:  



1) Determine the interactions between components through SPICE circuit analysis so that the failure 
weighting factor W(ni, nf) can be determined. 

2) Identify the failure distribution function for each independent component. Based on the failure 
distribution function, select a random number for each component and through the inverse 
transformation method calculate a time to failure for each component.  The time to failure t of a 
component (i.e., FET) related to a random number x is obtained by the proper selection of the 
distribution function. 

3) If the predicted time to failure of a component is greater than a pre-specified life, then the component 
is operational, otherwise it is a failure. Identify the first failed component, and set the component time 
to failure to be T. 

4) Modify the remaining time to failure of the surviving components by W(ni, nf).  The new time to 
failure Ti' (i = 2, 3, 4, …, n, and n is the number of components consisting the MMIC circuit) will be  
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  where ΔT is the difference between time to failure Ti of the surviving component i and time to failure 

Ti-1 of the failed component i -1. 

(5) Step (4) is repeated until the modified T's of all components are obtained, determine the system's time 
to failure as the modified T' of the final failed component, compare it to the system's mission life, and 
record it as a success or a failure. 

(6) Step (2) is repeated until a statistically adequate sampling size is obtained. 

(7) Calculate the reliability and MTTF by Equations (8) and (9), and error by the function, 
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The flow chart for the methodology is shown in Figure.3.  Two types of MMICs, which are the TIA 
(Transimpedence Amplifier) and LNAs (Low Noise Amplifier), have been analyzed by applying this 
method.  Equation (18) as is noted, has been derived from the definition of failure rate λ(t) which is  
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The failure rate λ(t) is an approximately inverse proportion to the surviving time to failure Δt for a fixed 
number of failures at time from t to t + Δt.  If λ(t) is increased by a weighting factor W(ni, nf), then Δt will 
be reduced by a factor of W(ni, nf).  The new surviving time to failure, therefore, is modified by Δt/W(ni, 
nf), and the modified time to failure will be determined by Equation (18). The relationship between the 
correlation coefficient and the weighting factor is obtained by assuming that the difference of time to 
failure between the surviving components and the failed component is proportional to the associated 
difference of current drift [7], i.e., 

d
ITTF !"!                                         (20) 



 

Determine the failure weighting
factor W(ni, nf) by SPICE analysis

Is  i = N ?

Modify the remaining times to failure of
the surviving components by W(ni, nf) till
the final failed component has been
determined.

Identify the first failed component,
and set the component time to
failure to be T.

Select the desired number N 
of simulations to be conduced,
and start simulation and set I = 1

Identify the failure distributions function
for each independent component.

Compare the modified T’ with the
desired performance to evaluate the
MMIC’s whether the simulation is a
success or a failure.

Determine the system’s time to
failure as the modified T’ of the
final failed component

Using the randomly generated set of
parameters to evaluate the random 
performance of the system and compare
it with the desired performance to
determine if it is a success or failure.

Generate a uniformly distributed
random number [ 0 - 1] for each 
component.

Transform the generated random
number to the corresponding time
to failure based on its distribution.

 
Figure 3  The flow chart for the reliability estimation of TIA and 

        LNA holds. 
 

We also note that equation (18) is applicable for both the TIA and LNA.  Based on the linear regression 
method, if two variables (FETs) have the same (current drift) dispersion, i.e., Si = Sj  then the correlation 
coefficient is identical to the regression coefficient bij and bji, i.e., rij = bij = bji, and the following relation 
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where ΔTi (or ΔTj) is the difference of time to failure between component i (or j) and the failed 
component j (or i) (Figure.4). 



 
Equation (23) can be generalized as: 
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Comparing Equation (19) with Equation (23), the relationship between correlation coefficient and the 
weighting factor is determined by the following equation: 
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Steps (4) and (5) can be explained as in Figure 4 in which random times to failure generated can be 
arranged so that T1 < T2 < ⋅⋅⋅ < Tn and W(1, 2, …, n - 1) is the weighting factor due to failures of 
component 1, 2, … , n - 1. 
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Figure 4   The Methodology to Determine the Time To Failure 

 
Case 2: If the correlation between components can not be estimated by SPICE circuit analysis or any 
other method, then the steps to model the MMIC system reliability by Monte Carlo techniques can be 
stated as follows:  

1) Determine from the MMIC circuit the specific groups of s-dependent components and groups of 
s-independent components, for example, FET1 through FET14 in Figure 5 are in an s-dependent 
group.  The failure rate of a component in the s-dependent groups will be affected by the state (failed 
or operational) of any other components which are in the same group. 

2) Identify the failure distribution function for each independent component. Based on the failure 
distribution function, select a random number for each component and through the inverse 
transformation method calculate a time to failure for each component.  

3) If the predicted time to failure of a component is greater than a pre-specified life, then the component 
is operational, otherwise it is a failure. Determine in which s-dependent subsystem the failed 
components belong to if a failure has occurred, and then set the component failure time to be T. 



 

4) If the failed components belong to an s-dependent group, then modify the remaining life of the 
surviving components in the same by W(ni, nf).  W(ni, nf) is  determined  by  assuming  that  the  total  
stress upon the s-dependent subsystem (stage) is fixed and also the stress upon the component is 
proportion to the failure rate λ of the component.  The new failure rate of the surviving component is 
obtained as: 
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  where n is the total number of components in the MMIC system, nf is the number of failed 

components, λo is the  original failure rate, and λ' is the new failure rate.  The weighting factor W(ni, 
nf) is estimated by  
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  The new time to failure can still be determined by Equation (18). 

5) Step (4) is repeated until the modified T' of all groups is determined and then determine the system's 
time to failure from the modified T's and compare it to the system's mission life. 

6) Step (2) is repeated until a statistically adequate sampling size is obtained.  The flow chart for the 
methodology is shown in Figure 6. 
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Figure.5   Reliability Block Diagram of the Low Noise Amplifier 
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Figure 6   Flow chart for calculation of MTTF. 

 
 III. VALIDATION OF MMIC RELIABILITY MODEL 
 
The two circuit examples have been simulated for both cases .  For Case 1, the correlations between FETs 
of both TIA and the LNA have been estimated by SPICE circuit analysis, and the Monte Carlo reliability 
simulations for both MMICs have also been performed.  For Case 2, the LNA and power amplifier have 
been analyzed for validation. 
 
 LNA and TIA High Temperature Analysis 
 
The assumptions for the reliability analysis are: 

1) The relationship between channel temperature (Tj) and median life (tm) is given by Arrhenius 
equation and is given as: 
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 Where,  tmo = 8.332×10-15 for power type or 1.405×10-12 for the LNA, and 
           k = 8.6×10-5 eV/°K 
2) The median life tm at temperature Tm can be estimated by given activation energy (Ea), test 

temperature (To) and median life (to) 
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 The overall activation energy was calculated to be 1.6eV for each of the individual FETs. 
 
(3) Time to failure data of the MMIC components tested by previously by the manufacturer most 

closely fits a lognormal distribution. Therefore lognormal distributions are used for all FETs. The 
lognormal probability distribution function f(t) is given as: 
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 where σ (standard deviation) and tm (median life) are two parameters should be given to determine 

operational lifetime t. 
 
4) The interactions between FETs can estimated by applying weighting factor, Wij = 1/(1 - rij) to 

modify the time to failure of the surviving components as shown in Figure.4. 
 
(5) The life performance of passive components can be neglected.  The computational schematic for 

Monte Carlo technique applied to the TIA and the LNA MMIC reliability analysis is shown in 
Figure 7, and its algorithm is the following: 

 
 INPUT N (the desired sampling size) 
 While number of sampling n <= N 
 {For each sampling 

 {Input number NC of components of the system and 
  Group them into dependence or independence groups individually 
 While i <= NC 

{Input sigma s and median life tm 
 Select a random number x 
 Transform random number x to random time to failure TTF based on its life 

distribution} 
 Determine the component which is failed first and let its time to  

failure be T1. 
 While j <= NC - 1 
 {Modify the time to failure of all surviving components with a   
 weighing factor w(ni, nj) based on their correlated relations.} 
 Determine system time to failure Ti 

 Compute reliability, MTTF and error 
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Figure 7   Flow Chart for Calculation of MMIC MTTF. 
 

LNA and Power Amplifier Reliability Analysis 
 
The reliability analysis of both the amplifiers is similar as in the previous case except that the s-dependent 
groups must be identified  and weighting factors must be estimated by Equation (31).  With some minor 
modifications, the algorithm and computer program for both TIA and  LNA are still applicable for both the 
LNA and the power amplifier, (see Figure 8). 
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Figure 8  The subroutine to estimate the modified MMIC time to failure 
 
Simulation Results  
 
The results of the reliability simulation for TIA, and the LNA and power amplifier based on discrete 
component data are shown in Figures 9 to 11.  The simulations by Monte Carlo techniques for both 
dependent (modified by a weighting factor) and independent (based on Mil-HDBK method) cases have 
been performed.  The results show that the estimation of MMICs' life including interactions between FETs 
is closer to experimental data than the estimation without taking into account the interactions. The results 
also indicate that interdependencies between devices is an important consideration and cannot be ignored. 
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Figure 9  MTTF versus Temperature for TIA 
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Figure 10  MTTF versus Temperature for the LNA 
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Figure 11  MTTF versus Temperature for the LNA and 

                 Power Amplifier 
 
 
Figures 9 to 11 show that the simulations give a conservative estimation of the MTTF.  The excellent 
agreement even holds for the temperature range of 225°C through 325°C, thus indicating that the 
simulation technique is applicable for high temperature simulations, where large non-linearities exist in the 
circuit’s material properties.  This investigation has therefore presented the simulation methodology for 
analog circuits operating in microwave systems such as MMICs.  The approach outlined in  this paper may 
be used for  analog type circuits where the correlation coefficients  have been identified. 



Conclusions 
 
In the case of a complex MMIC circuit, it is not plausible to attain the analytical reliability by the Markov 
approach  for constant failure rate, which perhaps is the best and most straightforward analytical approach 
to computations in systems with dependence.  The equations become numerous and out of control for a 
large MMIC system, and the Markov method may break down when failure rates become non-constant.   
We have shown that the Monte Carlo technique is the appropriate methodolgy for predicting reliability of 
such complex circuits.  We have successfully established a new reliability simulation model for MMICs 
and have shown that it has a wide applicability to analog circuits in general.  The reliability model will be 
applicable over a wide temperature range and hence may be used for microwave systems.  
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