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Applications for Flexible Hybrid Electronics

<-Energy
- Photovoltaics
- Solid-State Lighting
- Batteries

<-Electronics
- Displays
- e-Paper
- Sensors & Actuators

<-Biomedical and Healthcare

<-Communications
-RFID

<Defense



Electronic Pape

Motivation for ’ e
Electronics

g

earable Electronics



Most Promising Fabrication Methods

Fabrication methods for Flexible Electronics

* Photolithography

* Ink-jet printing

* Gravure

* Flexography

* Screen Printing

* Contact Printing / Soft Lithography
* Nano-Imprinting / Transfer Printing
* Laser-based approaches

* Roll-to-Roll

> Transfer Printing
> Photolithography with LT Processing

Transfer Printing
v Transfer Substrate

Printable Layer

«__~Device Substrate

Press & Heat

Cool & Separate

Relies on Differential Adhesion:
Printable Layer must be more adhesive to
Device Substrate than to Transfer Substrate



Successful Implementation of Transfer
Printing
Carbon Nanotubes
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onto
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D.R. Hines et. al., Proc. SPIE 6658, 66580Y (2007)




Adhesion Requirements for Transfer Printing
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Transter Printing Requirements

3.(a) Low Adhesion of

Electrodes to transfer 4. High Adhesion
Substrate, (b) But must Between Dielectric
survive Lift-off. Layer and Electrode.

/

/

1. High Adhesion
Between Electrode
And Device Substrate.

5. High Adhesion
/ Between Dielectric Layer
and Device Substrate.

2. Low Adhesion of transfer Substrate to
Dielectric Layer and Device Substrate.

6. Flat Surface w/ B i

no Flow Patterns.




Transfer Printing Issues

<+ Eliminate Stress Flow Patterns
<~ Achieve Flat Surfaces

Gate

<= High Adhesion between Printable Layer & Device Substrate

<= Low Adhesion between Transfer & Device Substrates



Transfer Printing Optimization
of Electrode Sub-Assemblies

2y Higher Pressure & Temperature can Alleviate Stress Flow pattern

But will Increase Adhesion between Transfer & Device Substrates.

Apply Self-Assembled Monolayers (SAM)
? (s) ? to Decrease Adhesion between
Transfer & Device Substrates

1. First Protect Au surface w/ BenzeneThiol SAM.

2. Then Apply Release Layer to Si Transfer Substrate.
(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane SAM

-

3. This allows Higher Temperature & Pressure for Printing Electrodes.
(500 psi & 170 °C for 3 min.)
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Transfer Printing (TP): High Quality Devices
Simple & Robust On Plastic !

with

No Mixed Processing on Device Substrate

No Chemicals used on Device Substrate Low Contact

Resistance
Compatible w/ Wide Variety of Materials
(both Organic & Inorganic) can use
Scalable to larger area & roll-to-roll Processing many D”fferent
Materials

TP has been used to Fabricate:

Transistors Inductors
Resistors Transformers
Capacitors Inverters

Vertical Interconnects Mechanical Resonators



Second Fabrication Technology For Flexible
Electronics

>Photolithography: Flexible polymer
attached to a silicon carrier substrate
(CS).

> Apply traditional processes but at low
temperatures.

> Our work is in the area of flexible
displays.



Flexible Displays
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Failure: Lineouts due to cyclical deformation
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» Flexible displays

» Previous work: Flexible
Substrates and Identification of
Problems

» Experimental Results:
Performance and Reliability

» Conclusions
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Displa?/ Operation
Pixel: TFT and Electro-Optical Material
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Key technological Challenges

(—> Robust materials with
manufacturable

processes on flexible
backplanes

Encapsulated
EO Materials < —>
and Devices

>

Backplane 4 @
— Low quality TFT materials

Electronics ./
Impermeable — @@
Flexible No manufacturing-ready
Substrates f “drop-in” replacements for
System glass

4]

Sub-system integration:
material / process compatibility



Experimental Approach inorder to
resolve the issues

> Process Science and Cell
Development with Test
Wafer.

> Mechanics of films on

flexible substrates iy

> Specifics of a-Si TFTs
> Metal conductors on a-Si

64x64 Arrays

Wafer Layout

QVGA |Array

TFTs and power supply S
for the array. i :

> Interlayer effects
> Reduction of stress
> Modeling stress effects &

Alignment marks

P ibe il 5
Ulss

Test TETs and

E test circuits

Power Source area



Low Temp a-Si Process Challenges, Substrate Challenges

Background and Motivation

» Impact of Fabrication
process on Performance
and Reliability.
» 3D Integration of a thin
film power cell for +ft self
bias.
» Stress build up in
hydrogenated amorphous
silicon thin film transistors
on a flexible substrate
» Impact of stresses
film delamination
cracking / spalling
permanent curvature/
warpage of the
substrate

Glass-based TFTs TFTs on Flex Lower quality
300-350 °C. Process 175-180 °C. Process active device
Temperatures Temperatures materials

a-Si:H n* a-Si:H contacts

& higher SiH,/SiH ratio =
higher V, and lower p_;

A A A A A A A A A A A A A A A A A A A A A A ARA R AR AR AL

® unactivated dopants =
higher p

& Unstable interface =
contact barrier

e

A A A A A A A A A A A A A A A A A A A A A A A A AR A A AR AR AAALRL

a-SiN,:H
gate dielectric
X higher charge trap density =

greater AV, (stability degradation)
and greater hysteresis

HS-PEN
e Process T limits
e Dimensional stability

e Permeable to O,/H,0:
barrier layer(s)

Stainless Steel
e Limited flexibility
e Electrical isolation

e Surface roughness:
planarization layer




On-Substrate Power Source Technology

Zinc

> Cathode: Mixture of
hydrated ruthenium
oxide and activated
carbon nanoparticles

> Anode: Oxidizing metal ¢
(zinc, aluminum...

> Capped Electrolyte: —
Weakly acidic and high Jine sheet
ViSCOSitY p°|ymer. Electrolyte stabilizing layer

Contact
Flex Substrate
Carbon+Ru02

> Provisional patents: And P e S (A aTE T W e
0 . ‘f‘t( 9 !'— NS ~g'
- ‘:Technique for Improving the ”gnof’a’”C’eSﬁ’gJ?;;(;j' (OVEIOCE (O3
Ruthenum Oxide Based o
Capacitors”
= “A Flexible, High Specific P
Energy Density, Rechargeable i

Battery”



The Basic Redox Reaction

Ruthenium reduced at the cathode 0, + 2H* +2e=—s Ru(OH),
Via a surface reaction:

Zinc oxidized at the anodeZn —* Zn*+ + 2e-

The cathode reaction is purely a surface reaction:

No dissolution of ruthenium occurs RuO,-nH,0 Nanoparticles,
which decorate activated
carbon with a binder (about
500nm diameter)

The hydrate, RuO,-nH,0,
is a mixed proton-
electron conductor, which
can generate an ultrahigh
pseudocapacitance.




Cross Section of the single sheet Zn-RuO,-nH,0 galvanic
cell: 1-Zn electrode, 2: RuO,-nH,0O/activated carbon
cathode, 2a-Adhesion layer containing RuOxide
nanoparticles, 2b-6Graphite film, current collector, 3-
separator, 4-packaging substrate

1 234




TFT Device Performance

Typical lps vs. Vps Behavior

Stainless
Steel

VDS (volts)

Parameter Silicon HS-PEN Stainless Steel
Saturation Mobility 0.3 cm?/V-s 0.11 cm2/\V/-s 0.20 cm?/V-s
ON/OFF Ratio 3 x 107 5 x 107 2 x 106
Leakage current 3.3x10-1BA 28x101BA 49x1012A
Threshold Voltage 3.00V 3.68V 409V
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Electrical Measurements: As Processed

> Drive current across entire array
> White dots represent shorted pixels
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Stress Effects / Distortion: Measured During processing
and after thermal degradation, As Processed, 100, 1000
Cycles, 1 hr Period (PEN Substrate)
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Effect of Strain on Mobility of a-Si
TFTs

> Mobility vs strain, AT=85C,

100hrs, total, 100 cycles. |y 2%\~ Tl  longitudina
> Mobility vs gate orientation |Vpos=05v X 7
> Performance restored once =

strain is removed. 3

Mechanics of films on flexible
substrates:

Temperature Cycling AT=85C, 1
hour Periods

strain (x10-4)

mirror
sensitivity

compressive ¢
<_

» crack networks formed in
SiOx coatings on polymer Microcracks

substrates Sk i Pebarniig
»PECVD SiOx coatings on PEN
substrates

» Failure mode:cracking/
channeling and debonding.




Summary of Effects of strainon TFTs

)

Definitive | & S| Definitive
mechanical = Safe Safe | = | mechanical
failure - region region g failure
= -
Strain “—t > Strain
(%) > 2 ? 0 03 05 (%)
Compression Tension

> Response: elastic deformation -> dielectric fracture
> Electrical function restored once strain is removed
» Compressive strain - mobility reduced

> Tensile strain - mobility increased



Modeling the Mechanical Response

> Internally induced forces

= Stress from fabrication, Thermal stress, Humidity stress

> Behavior of film/substrate

= Elastic modulus

= Thickness of film (d;), Thickness of substrate (d,)

Strain: built-in and total
Em= Eg* &+ €,
gy (total mismatch in strain)
&o (built in mismatch in strain)
& = (af + a)) X AT
(a; + a,) CTE of film and
substrate
AT (Tdeposition - Troom)
€ch = ~(Pg - Bg) X %RH
b = coefficient of humidity
expansion

it i i
*&o built in during film growth

*Atoms deposited in non-euqilibrium
positions

*When deposited on compliant
substrate - can produce strong
curvature

*Function of RF power during
deposition (PECVD)



Determining built in strain & stress Film/substrate under compression

Extracted from radius of curvature — — ¥ dfiim
Measure R e

Determine &), from previous equation
Subtract to and ¢ ,

¢ a . w
L‘f" Wi'"l t;: gch 'JB (l — U film ) O fitm

I:e: f;:ﬁt}':::s b‘;"&;ﬁ;"? ;::;: §] X € Film/substrate under tension

d film Y_ﬁ Im

> Pre-existing cracks cause crack
propagation

> Condition for crack formation
under tension

> Films crack more easily when
thickness increased

» [ specific surface energy

> 7 depends on elastic constants
of film and substrate
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Effect of substrates

Film will conform to the substrate
Biaxial stress arises in plane of film
Correlation to mismatch strain
2 op= gy Y¢¥ Y¢* ep is the biaxial elastic modulus of film
Substrate bend with a radius

s R=Y™*d% / 604d; , Stress is determined by measuring radius R
Compliant substrates

*Substrate also deforms - stress in film reduced
If held rigid during fabrication, stress defined as:

O = € Yf*/ (l * Yf*df Y s*ds)

o, = -05 d¢ /d,

*When carrier is removed, has radius of curvature:
R=[(Yd3 - Yid2)2+ 4Y Y did(d; + dg)?] / [6yY¢Ydeds(dg + d))

Y = plane strain elastic modulus



Summary

> General approach: Physics of Failure Approach:Mechanical Strain
Limits Determined.

> Results of Present Investigation
= PEN and to be extended to stainless steel
= Internal stress from fabrication
= External stress from life testing
> Power applied
> Elevated temperature
> Potential problems: Mainly Mechanical

Reliability?
Cyclical Stressing of the substrate results in the main

cause of failure.

> Design and integrate a test system to capture time to failure data
of thin film interconnects deposited on flexible substrates

> Develop a model to predict cycles to failure based on flexing a
2 Substrate o a set radius of curvature.



Wafer Test Structures For Fatigue Investigations

Common
Bus Bar
Other
test
structures
ITO .
Interconnec 2N
Traces [ | ‘ , Pads to
interface
MM W » with driver
i~y circuit
IIIIII ‘
w ¢ 111 MMM
Thickness
Layer (um) Process Process Temp (°C)
DC Magnetron
ITO 0.05 Sputtering 98
29 SiN 0.3 PECVD 180
Planarization 2 Spin coat 230
PEN substrate 125 N/A N/A




Stress-Number of Cycles to Failure
f(&V) = ﬁKV"(KV“t)ﬁ te=(kve)”

Model parameters estimated from TTF data using
Maximum Likelihood Estimation (MLE)

Cycles to Failure

Life vs Stress

300.000

50.000
1.000 10.00¢(
Stress (GPa)




Conclusions

> Cyclical Mechanical stress imposed on gate
line interconnects root cause of reliability
limitations of flexible displays

> Test system designed to capture TTF of
interconnects traces subjected to stress

> Life-stress model has been developed to
predict reliability of display bent to a set
radius of curvature. Fatigue curves
developed.

Acknowledgements: Industrial Funding (L-3
. Communications and The Display Consortium)



Future Work

> Different materials
= Carbon nanotubes
= Organic materials

> Device geometry (interconnect traces)
= Accordion
= Serpentine

> Fabrication process conditions (lower temp)

> Different processes techniques: Transfer
Printing.



SL Transfer Printed TFTs

Au=—= T PMMA
PET

Pn/PMMA/PET

L=1-105m & W=100ym

36 transistors in a 1 sq inch areal
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