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   Most Promising  Fabrication Methods  
 ►  Transfer Printing 

►  Photolithography with LT Processing 



Successful Implementation of Transfer 
Printing 













Second Fabrication Technology For Flexible 
Electronics 

► Photolithography: Flexible polymer 
attached to a silicon carrier substrate 
(CS). 

► Apply traditional processes but at low 
temperatures. 

► Our work is in the area of flexible 
displays. 



Flexible Displays 
Outline 

► Flexible displays 
► Previous work: Flexible 
Substrates and Identification of 
Problems 
► Experimental Results: 
Performance and Reliability 
► Conclusions 

Failure: Lineouts due to cyclical deformation 
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Key technological Challenges 



 Experimental Approach inorder to 
resolve the issues 

►  Process Science and Cell  
Development with Test 
Wafer.         

►  Mechanics of films on 
flexible substrates 

►  Specifics of a-Si TFTs  
►  Metal conductors on a-Si 

TFTs and power supply  
    for the array. 
►  Interlayer effects  
►  Reduction of stress 
►  Modeling stress effects

  

Wafer Layout 

Power Source area 



Low Temp a-Si Process Challenges, Substrate Challenges 
Background and Motivation 
► Impact of Fabrication 
process on Performance 
and Reliability. 
► 3D Integration of a thin 
film power cell for tft self 
bias. 
► Stress build up in 
hydrogenated amorphous 
silicon thin film transistors 
on a flexible substrate 
► Impact of stresses 

film delamination 
cracking / spalling 
permanent curvature/
warpage of the 
substrate 



On-Substrate Power Source Technology 

►  Cathode: Mixture of 
hydrated ruthenium 
oxide and activated 
carbon nanoparticles 

►  Anode: Oxidizing metal 
(zinc, aluminum…) 

►  Capped Electrolyte: 
Weakly acidic and high 
viscosity polymer. 

►  Provisional patents: 
  “Technique for Improving the 
‘Super-Capacitance’ of 
Ruthenium Oxide Based 
Capacitors” 

  “A Flexible, High Specific 
Energy Density, Rechargeable 
Battery” 

Polymeric Membrane 

Flex Substrate 

Electrolyte stabilizing layer 
And nanoparticle substrate 



The Basic Redox Reaction 
RuO2 + 2H+ +2e-        Ru(OH)2  

Zn           Zn++ + 2e- 

Ruthenium reduced at the cathode 
Via a surface reaction: 
Zinc oxidized at the anode:  

The cathode reaction is purely a surface reaction: 
No dissolution of ruthenium occurs RuO2-nH20 Nanoparticles, 

which decorate activated 
carbon with a binder (about 
500nm diameter) 

The hydrate, RuO2-nH2O, 
is a mixed proton– 
electron conductor, which 
can generate an ultrahigh 
pseudocapacitance. 
 
 



Cross Section of the single sheet Zn-RuO2-nH2O galvanic 
cell: 1-Zn electrode, 2: RuO2-nH2O/activated carbon 
cathode, 2a-Adhesion layer containing RuOxide 
nanoparticles, 2b-Graphite film, current collector, 3-
separator, 4-packaging substrate 



TFT Device Performance 



Electrical Measurements: As Processed 
►  Drive current across entire array 
►  White dots represent shorted pixels 

Flex Power 
Source 

Flex Power Source Area 



Stress Effects / Distortion: Measured During processing 
and after thermal degradation, As Processed, 100, 1000 

Cycles, 1 hr Period (PEN Substrate) 



 
Effect of Strain on Mobility of a-Si 

TFTs  
 ►  Mobility vs strain, ΔT=85C, 

100hrs, total, 100 cycles. 
►  Mobility vs gate orientation 
►  Performance restored once 

strain is removed. 

Mechanics of films on flexible 
substrates: 
Temperature Cycling ΔT=85C, 1 
hour Periods 

► crack networks formed in 
SiOx coatings on polymer 
substrates 
► PECVD SiOx coatings on PEN 
substrates 
► Failure mode:cracking/ 
channeling and debonding. 



Summary of Effects of strain on TFTs 

►  Response: elastic deformation -> dielectric fracture 
►  Electrical function restored once strain is removed 
►  Compressive strain – mobility reduced 
►  Tensile strain – mobility increased 



Modeling the Mechanical Response 
►  Internally induced forces 

  Stress from fabrication, Thermal stress, Humidity stress 
►  Behavior of film/substrate  

  Elastic modulus 
  Thickness of film (df), Thickness of substrate (ds)  

Strain: built-in and total 
εM = ε0 + εth + εch 
εM (total mismatch in strain) 
ε0 (built in mismatch in strain) 
εth = (αf + αs) x ΔT 

(αf + αs) CTE of film and 
substrate 
ΔT (Tdeposition – Troom) 

εch = -(βf - βs) x %RH   
β = coefficient of humidity 
expansion 

Built in Strain 

• ε0 built in during film growth 
 
• Atoms deposited in non-euqilibrium 
positions 
• When deposited on compliant 
substrate – can produce strong 
curvature 
• Function of RF power during 
deposition (PECVD) 



Film/substrate under tension 

►  Pre-existing cracks cause crack 
propagation 

►  Condition for crack formation 
under tension 

►  Films crack more easily when 
thickness increased 

►  Γ specific surface energy 
►   χ depends on elastic constants 

of film and substrate 

Determining built in strain & stress 

Extracted from radius of curvature 
Measure R 
Determine εM from previous equation 
εM = ε0 + εth + εch 
Subtract εth and εch 
Left with ε0 

Then calculate built in film stress 
σf0 = [Yf*Ys*ds  / (Yf*df + Ys*ds )] x ε0 

Film/substrate under compression 



Effect of substrates 
►  Film will conform to the substrate 
►  Biaxial stress arises in plane of film 
►  Correlation to mismatch strain 

  σf = εM Yf*, Yf*  εM is the biaxial elastic modulus of film 
►  Substrate bend with a radius 

  R = Ys*d2
s / 6σfdf , Stress is determined by measuring radius R 

   Compliant substrates 

• Substrate also deforms – stress in film reduced 
If held rigid during fabrication, stress defined as: 

σf = εM Yf*/ (1 + Yf*df /Ys*ds)  
σs = -σf df /ds 

• When carrier is removed, has radius of curvature: 
R = [(Ysd2

s -  Yfd2
f)2 + 4YfYsdfds(df + ds)2]  /  [6εMYfYsdfds(df + ds)] 

Y = plane strain elastic modulus 
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Summary 
►  General approach: Physics of Failure Approach:Mechanical Strain 

Limits Determined. 
►  Results of Present Investigation 

  PEN and to be extended to stainless steel 
  Internal stress from fabrication 
  External stress from life testing 

► Power applied 
► Elevated temperature 

►  Potential problems: Mainly Mechanical 

Reliability? 
Cyclical Stressing of the substrate results in the main 

cause of failure. 
►  Design and integrate a test system to capture time to failure data 

of thin film interconnects deposited on flexible substrates 
►  Develop a model to predict cycles to failure based on flexing a 

substrate to a set radius of curvature. 



Wafer Test Structures For Fatigue Investigations 
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Other 
test 
structures 

Pads to 
interface 
with driver 
circuit 

ITO  
Interconnect 
Traces 

Common 
Bus Bar 

Layer 
Thickness 

(µm) Process Process Temp (°C) 

ITO 0.05 
DC Magnetron 

Sputtering  98 
SiN 0.3 PECVD 180 

Planarization 2 Spin coat 230 
PEN substrate 125 N/A N/A 



Stress-Number of Cycles to Failure 
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Life vs Stress

Stress (GPa)
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Model parameters estimated from TTF data using 
 Maximum Likelihood Estimation (MLE) 
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Conclusions 
► Cyclical Mechanical stress imposed on gate 

line interconnects root cause of reliability 
limitations of flexible displays  

► Test system designed to capture TTF of 
interconnects traces subjected to stress 

► Life-stress model has been developed to 
predict reliability of display bent to a set 
radius of curvature. Fatigue curves 
developed. 
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Future Work  
► Different materials  

  Carbon nanotubes 
  Organic  materials 

► Device geometry (interconnect traces) 
  Accordion 
  Serpentine 

► Fabrication process conditions (lower temp)  
► Different processes techniques: Transfer 

Printing. 
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